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In the present communication of new formula is proposed for the resonance 
integrals appearing in the ~--theoretical treatment of compounds consisting 
of several weakly interacting conjugated systems. Some implications for 
semiempirical all-valence schemes are discussed. 
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1. Introduction 

In a 7r-theoretical treatment of compounds which consist of several well defined 
and sufficiently separated subsystems (e.g. cyclophanes) the effective Hamiltonian 
contains two classes of functionals: either they are related to basis set functions 
within a subsystem, or they depend on functions of two different subsystems. 
Suppose we know the functionals which can be successfully applied for the 
isolated subsystems, it is not obvious that we can also use the same functionals 
for the composite system. Another  problem is the choice of the intersubsystem 
functionals. For example, there are two commonly adopted functional forms for 
the resonance integrals flAS between basis set 7r-orbitals q A and ~ in different 
subsystems A and B:  (1) flAS -- sAB where S AB = ( A  I~t B) is the overlap integral, 
and (2) flAB is neglected unless atom s in A and atom t in B are "nearest  
neighbours". Method (2) could be called an intersubsystem tight-binding approxi- 
mation. 

Method (1) was applied in the study of cyclophanes and excimers [1] and 
donor-acceptor  complexes [2, 3] whereas in Ref. [4] method (2) was taken. In 
Ref. [5-7] the interactions between different subsystems are evaluated in terms 
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of overlap integrals between the molecular orbitals of the isolated subsystems. 
Such an approach is equivalent to method (1) [5] or method (2) [6, 7], depending 
only on how these overlap integrals are calculated. A characteristic feature of 
method (2) is its restriction to molecules where the nearest neighbour atoms 
with respect to different subsystems can be defined uniquely. In other cases one 
is forced to adopt method (1) or to retain overlap between more than nearest 
neighbour atoms [8]. Method (2) cannot be considered as a mere numerical 
approximation of method (1) since the relative differences between the S AB 
overlap integrals (mainly p~-p~-type)  are small, quite in contrast to those S AA 
within a subsystem (p=-p, , - type) which decrease rapidly with increasing atomic 
distance. However, the justification of method (1) was questioned [3] based on 
the analysis of de Bruijn [9]. Therefore it seems necessary to analyze the 
intersubsystem resonance integrals in more detail taking into account the assump- 
tions which are inherent in the treatment of the isolated subsystems. 

2. A New Approach 

In a ~r-theoretical treatment of an isolated conjugated subsystem A all occurring 
A m functionals are defined with respect to the orthonormal basis set ~o 

( A ,  A . . . .  ) [10]. Let h AA be the one-electron part of the Fock matrix in that 
basis. ~pA is obtained by the L6wdin transformation [11] ~0 A = (oAT An from the 
non-orthogonal basis s e t  (~A = ( ~ A ,  ~2-A . . . .  ) with TAA = (~AA)-I/2 and ~AA the 
overlap matrix of flA. Generally, the basis set functions ~pA and ~p~ of different 
subsystems A and B are not orthogonal and we define S AB as the overlap matrix 
o f  g and ~pB and (jAB the corresponding one o f  (~A and fiB. Similarly we have 
the m a t r i x  d AB of the resonance integrals b e t w e e n  (/~A and fiB. We can construct 
the following hypermatrices: 

T = {SABTAA}, h = {SABhAA}, E = {SAB}, 

fi = {(1 - r S = {(1 - 8AB)SAB}. 
Applying the L6wdin transformation [11] to the basis set ~0 = (cA,  ~oa . . . .  ) we 
obtain the totally orthonormal basis set ~ = ((k A, (o B . . . .  ), (k = r  -1/2 where 
S = E + TST. The one-electron part of the Fock matrix in the basis ~ is given 
by/- t  = S - 1 / 2 H  S -1/2 = fl q-fi with H = h + TILT. 

For the intersubsystem resonance integrals fiAB we may adopt the functional 
form proposed by Spanget-Larsen [12] 

= ~ , t  ta~ +a~ +Ksdrs,)) (1) 

which depends linearly on the overlap integrals ~AB. Since the elements of ~AS 
are by assumption numerically small it is a sufficient approximation to evaluate 
only up to first order in ~AB: i.e. S -1/2= E - � 8 9  and ~AB = 8A_B~AB where 
3A-B = 1 if subsystems A and B are neighbours and 3A-B = 0 otherwise. We 
obtain 

t~ = h, fi = T f i T -  �89 TSTh  + h T S T )  



Resonance Integrals for Transanular Interactions 67 

with 

~ AA = h AA 

Q T A A s A B T B B h  BB A A T A A s A B T B B ) ] "  ~AB  = (~A-13 [ T A A ~  AB T B~ - ~t + h (2) 

Hence, the one-electron part of the Fock matrices for the subsystems is unaffected 
by the transformations whereas the intersubsystem resonance integrals have to 
be calculated by using Eq. (2). Therefore in a ~r-theory an approach like method 
(1), i .e. [~AB = ~AB, is not justified. 

3. Applications 

In order to study the effect of the transformation of Eq. (2) we calculated orbital 
energies of some cyclophanes (cf. Table 1) utilizing the self-consistent HMO 
method of Ref. [13]. Following Herndon et al. [14] we chose the heteroatom 
model for the methylene group with aMe = -12 .03  and/3c  Me = --1.878 eV. It 
has been shown that with cyclophanes the cr-~-  separation is valid to a very 
good approximation [15]. All subsystems, i.e. the benzene rings, have been taken 
as planar with the mean interring distances given in Ref. [16]. The use of 
experimental geometries does not lead to any improvement in the calculated 
values. This is not surprising since it has been shown that the deformations of 
the benzene rings in the cyctophanes do not result in significant changes in the 
ionization potentials [17]. The correct orbital sequence in cyclophanes is only 
obtained if through-bond interaction is taken into account [16, 18]. In our simple 
model this can be accomplished by a resonance integral r between the methylene 
pseudoatoms forming the ethano bridges. Taking the phase conventions of the 
~'-basis set functions as in Ref. [16] it is straightforward to show that ~ B <  0, 
/ ~ S >  0 and r < 0. The negative r guarantees the correct order  of the bridge 
orbitals [16] ~ )  and ~ )  which are obtained as linear combinations of the 
~--basis functions on the methylene pseudoatoms. In the application of Eq. (2) 
the methylene pseudoatoms have not been included. 

The transanular resonance integrals /~m are calculated using the formula pro- 
posed by Mulliken [19], i.e. Kst = ( C -  1 - I g ~ l ) .  (1 + -a in Eq. (1). The 
overlap integrals ~AB are obtained with Slater atomic orbitals and exponents of 
Ref. [20]. At present we do not know if the Mulliken formula is a good 
representation for/~A,, although it guarantees for C = 1.6 the pairing properties 
in benzene, cf. Ref. [12], but major  deficiencies can probably be removed by a 
suitable choice of the parameter  C and the precise form of Ks~ is not crucial in 
our context. The transanular interactions in cyclophanes are mainly of the 
p~ -p~- type ,  leading to a smaller value of (7, i.e. C ~ 1.2 [19]. But since we use 
the usual Hiickel parameters as in Eq. (1) instead of o~ ~ and la,[ < [a~ I [12] and 
our overlap integrals are numerically too small [7], we expect a larger value 
for C. 

Using C = 1.5 and r = - 2  eV. a good correlation between calculated and ob- 
served ionization energies is obtained, cf. Table 1. Let us consider [2.2] 
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Fig. 1. Numbering of ~r-basis set functions in [2.2] (1, 4)-cyclophane 

(1, 4)cyclophane in more detail in order to see how the transformation in Eq. 
(2) affects the transanular resonance integrals. We have (all values in eV, 
numbering according to Fig. 1) /~AIB = 0.602, /ffa~ = 0.284, /ffa3B = 0.075, and 
/3A4B = 0.038 and after applying Eq. (2) we obtain the " t rue"  resonance integrals 
in a ~r-theory as follows: /~AB =0.589, /3~2 B =0.006, /~A~ =--0.035, and/~A4B = 
0.012. Whereas the resonance integral between the nearest neighbours is only 
slightly affected all others undergo drastic changes,/~A2n and/~AB are negligible 
and/3A3B is Of the same small order of magnitude as /~A4B. Thus in cyclophanes 
or similar compounds where the atoms in different subsystems A and B are 
placed on top of each other, only transanular resonance integrals between atoms 
which are nearest neighbours are of importance. This exemplifies that in such 
a case an approach like method (2) is well justified. The energy separation 
between the b3g and the b2u orbital (cf. Table 1) is given in our model by 2A, 
where A =/~AB +/~A2B _/~ 1A3 B _ ~ A4B = 0.618 eV. This value would have to be used 
for/3Aft in a method (2) calculation in order to obtain approximately the same 
results. 

It is interesting to note that an approach like method (1), i.e. we put/~AB =/~AB, 
also leads to nearly the same orbital energies with our studied cyclophanes, but 
only if one chooses the much smaller value C = 0.6. However, it should be 
emphasized that an equivalence of method (1) and (2) need not exist if one 
studies other compounds or other observables. Although we have studied the 
application of Eq. (2) only within the Hiickel theory, our conclusions apply as 
well in more sophisticated ~-theoretical methods. 

4. Concluding Remarks 

We have shown that in a consistent zr-theoretical treatment of compounds 
composed of weakly interacting conjugated subsystems the intersubsystem reson- 
ance integrals have to be calculated with Eq. (2). In the case where two different 
neighbouring subsystems are symmetrical with respect to a plane between them, 
only resonance integrals between basis set functions at corresponding atoms are 
of any importance. Hence, in that special class of compounds the application of 
an intersubsystem tight-binding approximation, i.e. method (2), is well justified. 
On the other hand, an approach like method (1) is not consistent with the 
underlying assumptions of ~- theory [10], although it might give nearly the same 
results for certain compounds and computed quantities. However, the resonance 
integrals then have to be chosen numerically smaller than with method (2) or 
with Eq. (2). This explains why Grein and Weiss [21] were forced to reduce in 
magnitude the interring resonance integrals with respect to the intraring integrals 
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in a C N D O  [22] study of the benzene -bo raz ine  complex in order  to get sensible 

results. A C N D O  study of [2.2] (1, 4)cyclophane by D u k e  et al. [23] yielded 

the b3, orbi tal  as highest one,  qui te  in contrast  to the exper imenta l  ass ignment  
[16]. The  b3, orbi tal  is stabilized by increasing t r ansanu la r  in terac t ion  which is 

obviously  unde res t ima ted  in that study. This is due to the use of very large 
orbi ta l  exponents  which have been  chosen in order  to reflect the shor t - range  

character  of the in t rar ing resonance  integrals. But  then  in C N D O  theory  where  

over lap effects are neglected,  the in ter r ing resonance  integrals become more  
similar to those ob ta ined  with me thod  (2) and  one would have to use numer ica l ly  
larger resonance  integrals.  This exemplifies that  also in a l l -valence theories  

over lap effects have to be included in order  to get a ba lanced  descr ipt ion of 

in t ra-  and  in te rsubsys tem interact ions.  A possible approach was recent ly  pro-  

posed by Spange t -Larsen  [12]. 
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